摘要:★已知數列{an}.{bn}都是無窮等差數列,其中a1=3,b1=2,b2是a2與a3的等差中項,且.求極限的值. 分析 首先需求出an.bn的表達式,以確定所求極限的表達式,為此,關鍵在于求出兩個數列的公差,“b2是a2與a3的等差中項 已給出一個等量關系,“an與bn之比的極限為 又給出了另一個等量關系,故可考慮先設出公差用二元方程組求解. 解 設{an}.{bn}的公差分別為d1.d2, ∵2b2=a2+a3,即2(2+d2)=(3+d1)+(3+2d1), ∴2d2-3d1=2.① 2分 又 即d2=2d1,② 4分 聯立①②解得d1=2,d2=4. ∴an=a1+(n-1)d1=3+(n-1)·2=2n+1, bn=b1+(n-1)d2=2+(n-1)·4=4n-2. 6分 10分

違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com

精英家教網
天堂wWW中文在线_男女啪啦猛视频免费_视频一区二区三区四区_亚洲 激情 无码 专区