【題目】2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用
(百萬元)和銷量
(萬盒)的統計數據如下:
研發費用 | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量 | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求與
的相關系數
精確到0.01,并判斷
與
的關系是否可用線性回歸方程模型擬合?(規定:
時,可用線性回歸方程模型擬合);
(2)該藥企準備生產藥品的三類不同的劑型
,
,
,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型
,
,
合格的概率分別為
,
,
,第二次檢測時,三類劑型
,
,
合格的概率分別為
,
,
.兩次檢測過程相互獨立,設經過兩次檢測后
,
,
三類劑型合格的種類數為
,求
的數學期望.
附:(1)相關系數
(2),
,
,
.
【題目】為增強市民交通規范意識,我市面向全市征召勸導員志愿者,分布于各候車亭或十字路口處.現從符合條件的500名志愿者中隨機抽取100名志愿者,他們的年齡情況如下表所示.
分組(單位:歲) | 頻數 | 頻率 |
5 | ||
① | ||
② | ||
合計 |
(1)頻率分布表中的①、②位置應填什么數據?并在答題卡中補全頻率分布直方圖(如圖),再根據頻率分布直方圖估計這500名志愿者中年齡在[30,35)歲的人數;
(2)在抽出的100名志愿者中按年齡再采用分層抽樣法抽取20人參加“規范摩的司機的交通意識”培訓活動,從這20人中選取2名志愿者擔任主要負責人,記這2名志愿者中“年齡低于30歲”的人數為X,求X的分布列及數學期望.