題目內容
【題目】已知函數為定義在
上的奇函數,且當
時,
(Ⅰ)求函數的解析式;
(Ⅱ)求函數在區間
上的最小值.
【答案】(Ⅰ)(Ⅱ)見解析
【解析】
(Ⅰ)利用奇函數的定義即可求函數f(x)的解析式.(Ⅱ)根據函數的解析式,先畫出圖象,然后對a(要考慮函數的解析式及單調性)進行分類討論即可求出函數的值域.
(Ⅰ)當x>0時,,又f(x)為奇函數,
則當x<0時,f(x)=-f(-x)=-(-x2-4x)=x2+4x,又f(0)=0
故f(x)解析式為
(Ⅱ)根據函數解析式畫出函數f(x)的圖像,可得f(-2)=-4,當x>0時,由f(x)=-4,解得x=2+2
① 當-2<a≤2+2時,觀察圖像可得函數最小值為f(-2)=-4
② 當a>2+2時,函數在[-2,2]上單調遞增,在[2,a]是單調遞減,由圖像可得函數的最小值為f(a)=
綜上所述:當-2<a≤2+2,最小值為-4;當a>2+2
時,最小值為
.

【題目】[2019·龍泉驛區一中]交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,且保費與上一年車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和費率浮動比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮 | |
上兩個年度未發生有責任道路交通事故 | 下浮 | |
上三個以及以上年度未發生有責任道路交通事故 | 下浮 | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | ||
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮 | |
上一個年度發生有責任道路交通死亡事故 | 上浮 |
某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了70輛車齡已滿三年該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 10 | 13 | 7 | 20 | 14 | 6 |
(1)求一輛普通6座以下私家車在第四年續保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損6000元,一輛非事故車盈利10000元,且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:
①若該銷售商店內有7輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選2輛,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次性購進70輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值(結果用分數表示).