題目內容

【題目】已知橢圓 過點,離心率為.

1求橢圓的方程;

2, 是過點且互相垂直的兩條直線,其中交圓, 兩點, 交橢圓于另一個點,求面積取得最大值時直線的方程.

【答案】(1) ;(2) .

【解析】試題分析:(1)由條件布列關于的方程組,得到橢圓的方程;(2)設 ,分類,聯立方程,利用根與系數關系表示面積, ,然后利用均值不等式求最值.

試題解析:

(1)由題意得,解得,

所以橢圓方程為.

(2)由題知直線的斜率存在,不妨設為,則 .

時,直線的方程為, 的方程為,易求得,

,此時.

時,則直線 .

圓心到直線的距離為.

直線被圓截得的弦長為.

,

,

.

所以

.

時上式等號成立.

因為,

所以面積取得最大值時直線的方程應該是.

練習冊系列答案
相關題目

違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com

精英家教網
天堂wWW中文在线_男女啪啦猛视频免费_视频一区二区三区四区_亚洲 激情 无码 专区