題目內容

【題目】已知圓:,直線.

(1)若直線與圓相切,的值;

(2)若直線與圓交于不同的兩點,當∠AOB為銳角時,k的取值范圍;

(3),是直線上的動點,作圓的兩條切線,切點為,探究:直線是否過定點。

【答案】(1) ; (2); (3) .

【解析】

(1)由直線l與圓O相切,得圓心O(0,0)到直線l的距離等于半徑r=,由此能求出k.

(2)設A,B的坐標分別為(x1,y1),(x2,y2),將直線l:y=kx﹣2代入x2+y2=2,得(1+k2)x2﹣4kx+2=0,由此利用根的判斷式、向量的數量積公式能求出k的取值范圍.

(3)由題意知O,P,C,D四點共圓且在以OP為直徑的圓上,設P(t,),其方程為,C,D在圓O:x2+y2=2上,求出直線CD:(x﹣)t﹣2y﹣2=0,聯立方程組能求出直線CD過定點().

(1)由圓心O到直線l的距離,可得k=±1。

(2)A,B的坐標分別為(x1,y1),(x2,y2),

將直線l:y=kx-2代入x2+y2=2,整理,(1+k2)·x2-4kx+2=0,

所以,Δ=(-4k)2-8(1+k2)>0,k2>1當∠AOB為銳角時,

,可得k2<>

又因為k2>1,k的取值范圍為。

(3)設切點C,D的坐標分別為(x1,y1),(x2,y2),

動點P的坐標為(x0,y0),則過切點C的切線方程為:x·x1+y·y1=2,所以x0·x1+y0·y1=2

同理,過切點D的切線方程為:x0·x2+y0·y2=2,

所以過C,D的直線方程為:x0·x+y0·y=2

,將其代入上式并化簡整理,

,x0∈R,

-2y-2=0,可得,y=-1,即直線CD過定點。

練習冊系列答案
相關題目

違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com

精英家教網
天堂wWW中文在线_男女啪啦猛视频免费_视频一区二区三区四区_亚洲 激情 无码 专区